A.P. Møller-Mærsk - Alfa Laval Aalborg - Hempel - MAN Diesel & Turbo - OSK-ShipTech - TORM -Control - Lyngsø Marine - Tetraplan - Transmar - Bureau Veritas - MacGregor - Claus Kruse -

J. Lauritzen - Principia North - Automation Lab - SIMAC - Esvagt - A2SEA - Eltronic - LR Marine -Dansk Analyse - Lloyd's Register - Clean Combustion - Kosan Crisplant - Moving Energy - Haldor Topsøe - Danish Maritime - Controllable Pre-Swirl Fins - Dynamic propeller shaft speed control -Trailer Cat - Vessel Performance Decision Support - Monitoring & Performance - Gas Valve Train -

Moving Energy - Haldor Topsøe - Danish Maritime - Controllable Pre-Swirl Fins - Dynamic propeller

Blue INNOship

Multi

tas - MacGregor - Claus Kruse - Vessel Performance Solutions - J. Lauritzen - Principia North - Automation Lab - SIMAC - Esvagt - A2SEA - Eltronic - LR Marine - Dansk Analyse - Lloyd's Register - Clean Combustion - Kosan Crisplant -

Methane - Shore based small scale LNG-LBG

Biocides - Servitization - A.P. Møller-Mærsk -

OSK-ShipTech - TORM - DBI - FORCE

Performance - Gas Valve Train - Multi fuel burner Shore based small scale LNG-LBG liquefaction un steaming antifouling paint - Selective Catalytic Re Servitization - A.P. Møller-Mærsk - Alfa Laval Aa ShipTech - TORM - DBI - FORCE Technology - Te

DTU - SDU - Propeller Control - Lyngsø Marine -

MacGregor - Claus Kruse - Vessel Performance S

Automation Lab - SIMAC - Esvagt - A2SEA - Eltro

Slow steaming antifouling paint

DTU

Project name:

Project participants:

Maersk

Hempel

Register - Clean Combustion - Kosan Crisplant - Moving Energy - Haidor Topsøe - Danish Maritime

Short project description

Development of paint tailor-made for slow steaming vessels Fuel efficient hull upon un-docking Control of biocide release during operation

Technology Readiness Level								
1	2	3	4	5	6	7	8	9
		X						

Key features or key findings

What key features or findings would you like to highlight from your project work until now?

- 1. Silicone-based hull coatings are measurably more fuel-efficient than conventional coatings.
- Welding seems contribute considerably to drag
- 3. Swelling of hull coatings have little influence on fuel performance (study to be finalised soon).

Project challenges and solutions

What challenges have the project team experienced and how has the team solved them?

- 1. Internal challenge failure of test design
- 2. Repetitive testing
- 3. External challenge oil price drop continues and tenacious!

Why should you buy our solution?

What makes your solution the preferable one compared to other available solutions?

The slow steaming paint will be tailor-made to your needs.

- Competitive specifications
- Top out-docking efficiency
- Long term performance